##### La Classification Mathématique par matières 2000Mathematics subject Classification 2000

Question : CC = 47Bxx

47-XX Operator theory
• 47Bxx Special classes of linear operators
• 47B06 Riesz operators; eigenvalue distributions; approximation numbers, s-numbers, Kolmogorov numbers, entropy numbers, etc. of operators
• 47B07 Operators defined by compactness properties
• 47B10 Operators belonging to operator ideals (nuclear, p-summing, in the Schatten-von Neumann classes, etc.) [See also 47L20]
• 47B15 Hermitian and normal operators (spectral measures, functional calculus, etc.)
• 47B20 Subnormal operators, hyponormal operators, etc.
• 47B25 Symmetric and selfadjoint operators (unbounded)
• 47B32 Operators in reproducing-kernel Hilbert spaces (including de Branges, de Branges-Rovnyak, and other structured spaces) [See also 46E22] [Nouveau code MSC 2000]
• 47B33 Composition operators [Nouveau code MSC 2000]
• Code MSC1991 affilié : 47B38
• 47B34 Kernel operators [Nouveau code MSC 2000]
• Code MSC1991 affilié : 47B38
• 47B36 Jacobi (tridiagonal) operators (matrices) and generalizations [Nouveau code MSC 2000]
• 47B37 Operators on special spaces (weighted shifts, operators on sequence spaces, etc.)
• 47B38 Operators on function spaces (general)
• 47B40 Spectral operators, decomposable operators, well-bounded operators, etc.
• 47B44 Accretive operators, dissipative operators, etc.
• 47B47 Commutators, derivations, elementary operators, etc.
• 47B48 Operators on Banach algebras
• 47B49 Transformers (= operators on spaces of operators)
• 47B50 Operators on spaces with an indefinite metric [See also 46C20]
• 47B60 Operators on ordered spaces
• 47B65 Positive operators and order-bounded operators